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mystic: software for autonomous discovery, 
design, and control under uncertainty 

Mike McKerns



mystic: model validation and optimal design 

 •  original funding: neutron instrument tuning & experiment design 
•  20+ years of development with over 65$M of funding 

–  DANSE (NSF): non-convex optimization and experiment design 
–  PSAAP (NNSA): parallel/distributed computing and UQ/V&V 
–  ExMatEx (ASC): scalability, reliability, and persistence 
–  additional funding from DARPA, AFOSR, DTRA, LANL, BNL, ... 
–  R&D/prod: JPMorgan, Barclays, Morgan-Stanley, LMCO, Roche, UTRC, ... 



learn model robustness/accuracy under uncertainty 
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solve PDEs w/ digital transformation (automation) 
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can we automate model design and validation? 
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designing an estimator is 
currently very laborious 
manual process 



human intellect into design of the computation 
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model certification/validation under uncertainty 

 

 
 

•  ... 
–  ... 

•  ... 
–  ... 

•  ... 
–  ... 



 
 

 
•  ... 

–  ... 



state the problem in terms of what we know 
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compute bounds determined by what we know 
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constraining information determines bounds 
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generalizes to bounds on unknown distribution 
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constraining information determines the bounds 
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bounds on expected error as an information game 
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solving for bounds on statistical quantities 

  

optimal bounds on the statistical error for a given model 
optimal model 

optimal bounds on model uncertainty for a given model 

optimal bounds on likelihood of failure for a given model 

 
 
•  A rigorous notion of optimality can be derived from the worst case bounds on 

expected distances of model predictions Φ(f,μ) from new data d to be 
sampled from the unknown data generating distribution D(f,μ), which 
depends on the unknown probability measure μ and response function f 
drawn from the admissible set A of potential solutions. 

•  The goal is to find a function of the data θ(d) that minimizes the worst case 
statistical error between the model predictions and θ(d). If we select an 
arbitrary (not necessarily optimal) function of the data θ∗(d), then statistical 
error is defined by maximizing the distance between Φ(f,μ) and θ∗(d) over 
the space defined by all (f,μ) ∈ A . The most robust model is the model 
that minimizes the worst case statistical error over all potential functions 
of samplings of the data from D(f,μ) -- (Owhadi et al, 2015). 



In measure space, extremum-seeking algorithms 
seek rare events and discover worst-case bounds,  
hence generally outperform Monte Carlo sampling. 

statistical kernels transform to probability space 

 •  optimization in product measure space (not 
input parameter space) 

 

•  mean-constrained optimization balances 
weights and positions of Dirac masses around a 
critical point 

probability distribution  

probability measure 
(of Dirac masses) 

critical point  (mean constraint) 

by transforming to  
product measure space, we 
maximize the quantity of interest by using 
optimizers to search over a discretized 
probability distribution 

UQ calculation of bounds on likelihood of 
failure vs percent distance the next 
shockfront forms beyond the average of 
1M shocks. Notice how UQ bounds 
respond to each new piece of information 
while Monte Carlo bounds do not 
(McKerns et al, 2019). 



example: mean constraints in measure space 

 •  … 
–  … 

•  … 
–  … 

•  … 
–  … 

Placing information constraints in kernels 
(e.g. not built into the model) enables testing 
how new measurements and information (i.e. 
adding a new constraint on the inputs or outputs) 
alters the bounds on all possible outcomes. 

We can perform design of experiments to discover an information set 
that can certify the system (to pass a statistical test within a given tolerance) 

1 



example: constraints from data & approx models   

 

 

•  ...show example code for dataset and distance constraints? 
–  ... 

•  ... 
–  ... 

data point 
& functional 
constraints 



failure of shielding under particle radiation 

 

 
•  simulate He-ion into Fe shielding 

–  use Monte Carlo sampling to calculate 
average penetration depth into shieling 

 
 
 
 

•  calculate likelihood of failure 
–  failure if particle breaches shielding 

•  want a design measure (risk) 
–  expected penetration depth 
–  bound on expected penetration depth 
–  bound on worst-case penetration 

 



 
 



likelihood of non-elastic failure in tower joint 

§  Failure	occurs	when	axial	strain	in	
any	truss	member	exceeds	the	
member	yield	strain	

§  We	determine	the	probability	of	
non-elas9c	failure	with	respect	to	
the	unknown	earthquake	ground	
mo9on	the	structure	will	experience	

a	truss	structure	

typical	scenarios	for	resul9ng	
ground	accelera9on	

when	axial	
strain	occurs	
near	truss		
resonance	
modes,	failure	
can	occur	

Owhadi	et	al,	SIAM	Review	2012	

•  Problem:	Can	we	cer9fy	the	seismic	safety	of	a	
given	structure	subjected	to	earthquake	ground	
mo9on,	where	only	the	maximum	magnitude	and	
focal	distance	of	the	earthquake	are	known?	

•  We	construct	all	possible	earthquake	scenarios	
–  Random	inputs	of	high-dimensionality	(~600)	

with	a	large	number	of	constraints	(~1200)	
–  Inputs	are	coefficients	ci	in	the	transfer	

func9on,	and	amplitudes	Xi	and	dura9ons	si	in	
the	earthquake	source	func9on	

•  Ground	accelera9on	is	a	convolu9on	of	the	source	
and	transfer	func9ons,	while	dynamics	of	joint	
deflec9on	are	governed	by	

probability	of	failure	as	
a	func9on	of	maximum	
ground	accelera9on	

value	at	risk 



can we better utilize physical information?  

 

 

•  kernel transforms often are used to incorporate nonlinear 
information into linear models 

•    
–  … 

•  … 
–  … 

•  … 
–  … 



 
 

A kernel transform can be seen to 
transform the model f'(x) = f(c(x)) or 

to transform the input coordinates 
f(x') = f(c(x)) 

Constraining 
information from 

measurements 
and theory are 

used to 
construct a 

kernel. Learning 
is then 

performed in the 
space of valid 

solutions  

	

Kernel 
Transform 

Microstructures 
Valid under Data 

and Theory 
Constraints 

Can we build kernels that ensure 
models are trained in a space that 
guarantees they are valid with 
respect to all known physical and 
statistical constraints? 

If so, can we think of hierarchical learning in 
terms of hierarchical kernel transformations? 



example: design optimization w/ soft constraints 

 

 



example: global MIP w/ symbolic constraints 

 

 

•  … 
–  … 

•  … 
–  … 

•  … 
–  … 



physics-informed kernels increase model validity 

  
 
 

 

•  box (range) constraints 
•  nonlinear (functional) constraints 
•  uniqueness and set-membership constraints 
•  probabilistic and statistical constraints  
•  constraints imposing sampling statistics 
•  inputs from sampling distributions 
•  constraints from legacy data (points and data sets) 
•  constraints from models and distance metrics  
•  constraints on (product) measures 
•  support vector (weight, independence) collapse 

instead of training purely on data, models are fit in a space defined by 
physical and statistical constraints -- thus are guaranteed to be valid 

kernels that utilize physics and 
statistical information can lead 
to validated models that 
produce better predictions 

we can think of 
kernels as operators 
on coordinate space 

data & functional constraints 



example: information-constrained learning 

 

 

•  … 
–  … 

•  … 
–  … 

•  … 
–  … 



can we perform these calculations efficiently? 
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•  … 
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Buckshot	Simplex:	200s	for	batch	
of	100	solvers	on	512	cores	

Diff	Ev:	9500s	(100	points		at	
95s	/point)		popula9on	of	40	

Simplex:	1000s	(100	points		at	10s	/point)	

Single	Buckshot	Powell	
search	for	all	minima	

Mul9-itera9on	Buckshot	
Powell	search	for	all	minima.	

“cache” is an abstraction on storage. “load” is local memory 
cache, while “hit” is an archive hit. “miss” is a new point.  
Results shown are for when configured for direct 
connectivity with archival database. 

a parallel ensemble 
of simplex solvers 

performs better 
than a genetic 

algorithm, and in 
much less time. 

 
•  asynchronous parallel ensemble optimization provides orders-

of-magnitude speedup for multi-layer and global optimizations  



parallel graph execution and statefulness 

 

 

   # the function to be minimized and the bounds
   from mystic.models import rosen as my_model
   lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]

   # get monitor and termination condition objects
   from mystic.monitors import LoggingMonitor
   stepmon = LoggingMonitor(1, 'log.txt')
   from mystic.termination import ChangeOverGeneration
   COG = ChangeOverGeneration()

   # select the parallel launch configuration
   from pyina.launchers import TorqueMpi
   my_map = TorqueMpi('25:ppn=8').map

   # instantiate and configure the nested solver
   from mystic.solvers import PowellDirectionalSolver
   my_solver = PowellDirectionalSolver(len(lb))
   my_solver.SetStrictRanges(lb, ub)
   my_solver.SetEvaluationLimits(1000)

   # instantiate and configure the outer solver
   from mystic.solvers import BuckshotSolver
   solver = BuckshotSolver(len(lb), 200)
   solver.SetRandomInitialPoints(lb, ub)
   solver.SetGenerationMonitor(stepmon)
   solver.SetNestedSolver(my_solver)
   solver.SetSolverMap(my_map)
   solver.Solve(my_model, COG)
   # obtain the solution
   solution = solver.bestSolution 

•  available	launchers:	
–  mul9process,	threaded	
–  MPI	parallel	
–  RPC/IPC	(distributed)	
–  SSH	

•  available	schedulers:	
–  torque,	slurm,	lsf	
	

F(x) 

F(x) 

DB 

local memory cache 

central archive 

automated state 
saving and sharing 
 

cache-to-archive 
interaction 
 

caching to memory, 
hdf, file, directory, 
database 



asynchronous execution enables active learning  

 •  ... 
–  ... 
–  ... 

•  ... 
–  ... 
–  ... 

•  ... 
–  ... 
–  ... 



Interpolation or ML on 
points generated from a 

global search (for all 
extrema and/or critical 
points) can yield much 

more accurate nonlinear 
surrogate models than 

pure sampling methods. 

example: accurate nonlinear interpolation / ML 

 

 

interpolated	surfaces	due	
to	search	for	extrema	
and/or	cri9cal	points	



example: neutron diffraction data analysis  

 

 
 

•  … 
–  … 

•  … 
–  … 

•  … 
–  … 



 
 

 
•  data analysis typically requires an expert to provide a good 

initial guess that is already very close to ground truth 
–  historically, high-dimensional nonlinear optimizations are attempted with 

fast local optimizers (in Rietveld refinement) 
–  it can take an expert analyst days to months to produce a good 

refinement, especially for parameters with large nonlinear sensitivity   

U-Mo study with 
U-alpha starting at 
(2.836, 5.867, 4.936) 

U-Mo study with 
U-alpha starting at 
(2.891, 5.841, 5.015) 

(Δ1.94%, Δ-0.44%, Δ1.60%) 

months 

a naïve parallel 
ensemble 
search to match 
lattice 
parameters and 
weight fraction 
produced the 
same results in 
hours (Biwer et 
al, 2019). 



example: robust prediction of materials properties 

 

 

 
 

–  in-situ loading/heating measurement (SMARTS) 
–  Spotlight automates Rietveld refinement (GSAS) 
–  MILK automates Texture Analysis (MAUD) 
–  mystic automates active learning with UQ+ML 
–  uses expected misfit as the quality metric 



 
 

	

	

	

	
An ensemble of active samplers is used to discover the 
critical points of two lattice parameters for PbSO4. Results 
are shown for a single pass of N samplers, where each 
sampler is driven by a gradient descent optimizer. As N is 
increased (left to right), the accuracy of a surrogate trained 
on the sampled data increases. We use sampling to find 
the critical points on the R-factor (e.g. chi-squared) 
surface, where the global minimum is the best fit Rietveld 
parameters.  

The evolution of the γ-U lattice parameter during annealing of uranium 
10%-wt. molybdenum at 490C. The predicted lattice parameter from 
Spotlight (blue dots) and a scripted refinement using its results 
(yellow) are overlaid on the results from an expert (dashed black) for 
comparison. 



modular workflow for statistics under uncertainty 

 

 
•  ...: 

–  ... 
–  ... 

 
 

•  unified interface for statistical quantities  
–  expected value and bounds thereof 
–  plug in the UQ approach (OUQ, Bayesian inverse, GP, ...) 

•  unified interface to models “used in UQ calculations”  
–  built-in methods for sampling, connectivity to data archive 
–  interpolators & ML estimators for automated surrogate construction 

•  ... 
–  ... 



 
 

BaseUQ
axes
constraint
cvalid
kwds : dict
lb
model
npts
samples
ub
xvalid
expected()
lower_bound()
objective()
solve()
upper_bound()

Bounds
lower : property
n
upper : property
wlb : NoneType
wub : NoneType
xlb
xub

ErrorModel
nx
ny
rnd

UQModel

distance()
sample()

Estimator
estimator
function
transform
apply()
ft()
map()
predict()
score()
test()
train()

Estimator
args : dict
function : NoneType
maxpts
model : property
noise
x
z
Plot()
Test()
Train()

function

LearnedModel
nx
ny
rnd
ft()

__func__

ExpectedValue

objective()

InterpModel
nx
ny
rnd
ft()

Interpolator
args : dict
function : NoneType
maxpts
model : property
noise
x
z
Interpolate()
Plot()

MaximumValue

objective()

MeasureBounds
lower : property
n
upper : property
wlb
wub
xlb
xub

MinimumValue

objective()

NoisyModel
nx
ny
rnd : bool

ProbOfFailure

objective()

SuccessModel
nx
ny
rnd

ValueAtRisk

objective()

WrapModel
nx
ny
rnd



Constraints | x, P(x)

ProbOfFailure

Condition | x

SuccessModelBounds | x

ave P [ upper E |error| < tolerance ]

ProbOfFailure.expected | x

WrapModel

ErrorModelConstraints | x, P(x)

ExpectedValue

F(x|A)

Metric | x

Bounds | x

ExpectedValue.upper_bound | x

WrapModel

NoisyModel

Fs(x|As)

quickly assemble very complex workflows 

  
•  simple high-level interface for 

interacting components 
–  “UQ models” 
–  statistical quantities 
–  bounds 
–  constraints 
–  penalties 
–  conditions (bool) 

 
 
 
 
 
 

•  rapid exploration of complex 
statistical workflows 
–  very few lines of code 
–  customizable down to 

extremely low-level 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

 
 



UQ-driven learning of optimal statistical estimator 

 

 
 

 

•  ... 
–  ... 



 
 

 
•  ... 

–  ... 



active learning of expected instrument response 

 



UQ-driven active learning and dynamic sampling 

 

 

 
•  ensemble sampling: 

–  uses an ensemble of local optimizers to 
discover critical points of the unknown 
surface 

–  can customize the local solver 
–  npts is the size of the ensemble 
–  sample (asynchronous) 
–  sample_until (blocking) 

–  evals, iters, terminated 

test score (on newly encountered data) converges over time 



test score (on newly encountered data) converges over time 

At a cursory level, both traditional 
sampling from a distribution and 
optimizer-driven sampling seem to 
reproduce the Rastrigin function. 
 
However, note that upon zooming in the  
Rastrigin function has numerous local 
minima and maxima. 

optimizer-driven sampling 

sampling from a distribution 

UQ-driven active learning and dynamic sampling 
New samplers are spawned each 
iteration, until the test score <= 2e-7 for 
three consecutive iterations. (Better: 
stop if no new critical points found in N 
iterations). 
 
Surrogate is (re)trained with a small noise 
injection until score <= 1e-7. 



example: surrogate of one-component plasma 
•  We used the framework to build database  

and surrogate functions for OCP. 
•  LAMMPS is used as objective function. 
•  Takes 2 inputs (r, Gamma) returns g(r), self-

diffusion, and viscosity 

1.  Set the bounds of parameters space: 
r =[0, 5] and Gamma=[0,50] 

2.  Choose sampler à Lattice sampler 
3.  Choose optimizers à Nelder Mead. 

NCOG=10-4 
4.  Use thin plate RBF to interpolate data 
5.  Tolerance for valid surrogate: 

max_distance=10-6 
sum_distance=10-3 

•  Execution 

 
 

We found valid surrogates of the 
radial distribution function, 
screening function, diffusion, and 
viscosity after 3822 function 
evaluations (MD). 

radial 
distribution 
function 

screening 
function 

diffusion 

viscosity 



Hidden layers

Initial rough guess of

machine parameter

settings NN input

Detected phase space

posi
tio

n

e
n
e
rg

y

Cost based on compared distributions

Trained neural network

 

beam-

based

feedback

Continuously

updated

parameter

settings

Particle Accelerator

Target

phase space

Model-independent

feedback

TCAV 

Diagnostic

Objective 
 
Develop adaptive feedback control tool for automated tuning 
of particle accelerator beams to minimize beam loss, 
maximize current, and provide an optimally safe beam in a 
dynamically changing environment[1]. 

Approach 
 
Fully automate accelerator beam steering, with 
equipment settings as input and output indicating 
the quality of beam. 
 
Train a physics-informed model that minimizes 
expected worst-case bounds on the quality metric 
between the accelerator model and data acquired 
from non-invasive diagnostics. 
 
Update the learned model as newly acquired data 
breaks the model quality threshold. 

Impact 
 
Preliminary work[2] demonstrates longitudinal phase-
space control of e- beams at the LCLS. 
 
Dramatically increase rate of scientific discovery from 
accelerator systems, while minimizing the risk of 
failure and/or damage to the system. 

[1] A. Scheinker 20210160DR; [2] A. Scheinker PRL, 121.4 (2018) 

Active Learning for Robust Particle Accelerator Beams 



Active Learning for Realizing Robust Quantum Hardware 

[1] M. Martin 20210116DR; [2] A.D. Tranter Nature Com, 9 (2018) 

Objective 
 
Automate learning of 
quantum technology with 
enhanced performance and 
robustness against 
environmental 
fluctuations[1]. 

Approach 
 
Fully automate the quantum sensing experiment, 
with experiment settings as input and output 
indicating the quality of results. 
 
Train a physics-informed model that minimizes 
expected worst-case bounds on the quality metric 
between the model and experiment. 
 
Update the learned model as newly acquired data 
breaks the model quality threshold. 

Impact 
 
Preliminary work[2] indicates large performance 
gains for cold-atom experiments. 
 
Expect rapid automated discovery of new 
capabilities to produce better manipulation of the 
quantum state, faster duty cycle, sensor initialization 
capabilities, etc. 



…current work and outlook 

 

 

 
 

•  new optimization and learning algorithms and workflows 
•  new interpolation strategies and constraints/transforms 
•  new sampling algorithms and auto-differentiation strategies 
•  new auto-dimensional reductions and kernel-based sensitivities 
•  high-level active learning workflow improvements 

 
•  mystic is available at: 

–  https://github.com/uqfoundation 

 

•  documentation and tutorials: 
–  http://mystic.readthedocs.io 
–  https://github.com/mmckerns/tutmom 
–  https://github.com/mmckerns/tlkmys 

•  questions? 
–  contact me at: mmckerns@uqfoundation.org 



 End Presentation 


